Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41.593
Filtrar
1.
J Comp Neurol ; 532(4): e25614, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38616537

RESUMEN

Comprehensive understanding of interconnected networks within the brain requires access to high resolution information within large field of views and over time. Currently, methods that enable mapping structural changes of the entire brain in vivo are extremely limited. Third harmonic generation (THG) can resolve myelinated structures, blood vessels, and cell bodies throughout the brain without the need for any exogenous labeling. Together with deep penetration of long wavelengths, this enables in vivo brain-mapping of large fractions of the brain in small animals and over time. Here, we demonstrate that THG microscopy allows non-invasive label-free mapping of the entire brain of an adult vertebrate, Danionella dracula, which is a miniature species of cyprinid fish. We show this capability in multiple brain regions and in particular the identification of major commissural fiber bundles in the midbrain and the hindbrain. These features provide readily discernable landmarks for navigation and identification of regional-specific neuronal groups and even single neurons during in vivo experiments. We further show how this label-free technique can easily be coupled with fluorescence microscopy and used as a comparative tool for studies of other species with similar body features to Danionella, such as zebrafish (Danio rerio) and tetras (Trochilocharax ornatus). This new evidence, building on previous studies, demonstrates how small size and relative transparency, combined with the unique capabilities of THG microscopy, can enable label-free access to the entire adult vertebrate brain.


Asunto(s)
Microscopía de Generación del Segundo Armónico , Animales , Pez Cebra , Encéfalo , Mapeo Encefálico , Mesencéfalo
2.
J Biochem ; 175(4): 439-446, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38616642

RESUMEN

Aspartate/alanine exchange transporter (AspT) is a secondary transporter isolated from the lactic acid bacterium Tetragenococcus halophilus D10 strain. This transporter cooperates with aspartate decarboxylase to produce proton-motive force through decarboxylative phosphorylation. A method that successfully analyzes the AspT mechanism could serve as a prototype for elucidating the substrate transport mechanism of other exchange transporters; therefore, the purpose of this study was to search for conditions that improve the thermal stability of AspT for 3D structure analysis. We used the fluorescence size-exclusion chromatography-based thermostability assay to evaluate conditions that contribute to AspT stability. We found that the AspT thermostability was enhanced at pH 5.0 to 6.0 and in the presence of Na+ and Li+. Pyridoxal phosphate, a coenzyme of aspartate decarboxylase, also had a thermostabilizing effect on AspT. Under the conditions obtained from these results, it was possible to increase the temperature at which 50% of dimer AspT remained by 14°C. We expect these conditions to provide useful information for future structural analysis of AspT.


Asunto(s)
Ácido Aspártico , Enterococcaceae , Alanina , Cromatografía en Gel , Proteínas de Transporte de Membrana
3.
Photonix ; 5(1): 9, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38618142

RESUMEN

Measurements and imaging of the mechanical response of biological cells are critical for understanding the mechanisms of many diseases, and for fundamental studies of energy, signal and force transduction. The recent emergence of Brillouin microscopy as a powerful non-contact, label-free way to non-invasively and non-destructively assess local viscoelastic properties provides an opportunity to expand the scope of biomechanical research to the sub-cellular level. Brillouin spectroscopy has recently been validated through static measurements of cell viscoelastic properties, however, fast (sub-second) measurements of sub-cellular cytomechanical changes have yet to be reported. In this report, we utilize a custom multimodal spectroscopy system to monitor for the very first time the rapid viscoelastic response of cells and subcellular structures to a short-duration electrical impulse. The cytomechanical response of three subcellular structures - cytoplasm, nucleoplasm, and nucleoli - were monitored, showing distinct mechanical changes despite an identical stimulus. Through this pioneering transformative study, we demonstrate the capability of Brillouin spectroscopy to measure rapid, real-time biomechanical changes within distinct subcellular compartments. Our results support the promising future of Brillouin spectroscopy within the broad scope of cellular biomechanics.

4.
Bio Protoc ; 14(7): e4963, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38618173

RESUMEN

The assessment of peptide-protein interactions is a pivotal aspect of studying the functionality and mechanisms of various bioactive peptides. In this context, it is essential to employ methods that meet specific criteria, including sensitivity, biocompatibility, versatility, simplicity, and the ability to offer real-time monitoring. In cellular contexts, only a few proteins naturally possess inherent fluorescence, specifically those containing aromatic amino acids, particularly tryptophan. Nonetheless, by covalently attaching fluorescent markers, almost all proteins can be modified for monitoring purposes. Among the early extrinsic fluorescent probes designed for this task, dansyl chloride (DNSC) is a notable option due to its versatile nature and reliable performance. DNSC has been the primary choice as a fluorogenic derivatizing reagent for analyzing amino acids in proteins and peptides for an extended period of time. In our work, we have effectively utilized the distinctive properties of dansylated-calmodulin (D-CaM) for monitoring the interaction dynamics between proteins and peptides, particularly in the context of their association with calmodulin (CaM), a calcium-dependent regulatory protein. This technique not only enables us to scrutinize the affinity of diverse ligands but also sheds light on the intricate role played by calcium in these interactions. Key features • Dynamic fluorescence and real-time monitoring: dansyl-modified CaM enables sensitive, real-time fluorescence, providing valuable insights into the dynamics of molecular interactions and ligand binding. • Selective interaction and stable fluorescent adducts: DNSC selectively interacts with primary amino groups, ensuring specific detection and forming stable fluorescent sulfonamide adducts. • Versatility in research and ease of identification: D-CaM is a versatile tool in biological research, facilitating identification, precise quantification, and drug assessment for therapeutic development. • Sensitivity to surrounding alterations: D-CaM exhibits sensitivity to its surroundings, particularly ligand-induced changes, offering subtle insights into molecular interactions and environmental influences.

5.
Mol Pharm ; 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38620059

RESUMEN

Antimicrobial resistance has emerged as a global threat to the treatment of infectious diseases. Antibacterial photodynamic therapy (aPDT) is a promising alternative approach and is highly suitable for the treatment of cutaneous bacterial infections through topical applications. aPDT relies on light-responsive compounds called photosensitizer (PS) dyes, which generate reactive oxygen species (ROS) when induced by light, thereby killing bacterial cells. Despite several previous studies in this area, the molecular details of targeting and cell death mediated by PS dyes are poorly understood. In this study, we further investigate the antibacterial properties of two water-soluble Sn(IV) tetrapyridylporphyrins that were quaternized with methyl and hexyl groups (1 and 2). In this follow-up study, we demonstrate that Sn(IV)-porphyrins can be photoexcited by blue light (a 427 nm LED) and exhibit various levels of bactericidal activity against both Gram-(+) and Gram-(-) strains of bacteria. Using localization studies through fluorescence microscopy, we show that 2 targets the bacterial membrane more effectively than 1 and exhibits comparatively higher aPDT activity. Using multiple fluorescence reporters, we demonstrate that photoactivation of 1 and 2 results in extensive collateral damage to the bacterial cells including DNA cleavage, membrane damage, and delocalization of central systems necessary for bacterial growth and division. In summary, this investigation provides deep insights into the mechanism of bacterial killing mediated by the Sn(IV)-porphyrins. Moreover, our approach offers a new method for evaluating the activity of PS, which may inspire the discovery of new PS with enhanced aPDT activity.

6.
Nano Lett ; 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38621356

RESUMEN

Many types of self-assembled 2D materials with fascinating morphologies and novel properties have been prepared and used in solution. However, it is still a challenge to monitor their in situ growth in solution and to control the number of layers in these materials. Here, we demonstrate that the aggregation-induced emission (AIE) effect can be applied for the in situ decoupled tracing of the lateral growth and multilayer stacking of polymer lamellar crystals in solution. Multilayer stacking considerably enhances the photoluminescence intensity of the AIE molecules sandwiched between two layers of lamellar crystals, which is 2.4 times that on the surface of monolayer crystals. Both variation of the self-seeding temperature of crystal seeds and addition of a trace amount of long polymer chains during growth can control multilayer lamellar stacking, which are applied to produce tunable fluorescent patterns for functional applications.

7.
Ann Surg Oncol ; 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38622456

RESUMEN

BACKGROUND: For patients with peritoneal carcinomatosis, extent of disease and completeness of cytoreductive surgery (CRS) are major prognostic factors for long-term survival. Assessment of these factors could be improved using imaging agents. Pegsitacianine is a pH-sensitive polymeric micelle conjugated to the fluorophore indocyanine green. The micelle disassembles in acidic microenvironments, such as tumors, resulting in localized fluorescence unmasking. We assessed the utility of pegsitacianine in detecting residual disease following CRS. PATIENTS AND METHODS: NCT04950166 was a phase II, non-randomized, open-label, multicenter US study. Patients eligible for CRS were administered an intravenous dose of pegsitacianine at 1 mg/kg 24-72 h before surgery. Following CRS, the peritoneal cavity was reexamined under near-infrared (NIR) illumination to evaluate for fluorescent tissue. Fluorescent tissue identified was excised and evaluated by histopathology. The primary outcome was the rate of clinically significant events (CSE), defined as detection of histologically confirmed residual disease excised with pegsitacianine or a revision in the assessment of completeness of CRS. Secondary outcomes included acceptable safety and pegsitacianine performance. RESULTS: A total of 53 patients were screened, 50 enrolled, and 40 were evaluable for CSE across six primary tumor types. Residual disease was detected with pegsitacianine in 20 of 40 (50%) patients. Pegsitacianine showed high sensitivity and was well tolerated with no serious adverse events (SAEs). Transient treatment-related, non-anaphylactic infusion reactions occurred in 28% of patients. CONCLUSIONS: Pegsitacianine was well tolerated and facilitated the recognition of occult residual disease following CRS. The high rate of residual disease detected suggests that the use of pegsitacianine augmented surgeon assessment and performance during CRS.

8.
Chembiochem ; : e202400068, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38623786

RESUMEN

Far-red and near-infrared fluorescent proteins have regions of maximum transmission in most tissues and can be widely used as fluorescent biomarkers. We report that fluorescent phycobiliproteins originating from the phycobilisome core subunit ApcF2 can covalently bind biliverdin, named BDFPs. To further improve BDFPs, we conducted a series of studies. Firstly, we mutated K53Q and T144A of BDFPs to increase their effective brightness up to 190% in vivo. Secondly, by homochromatic tandem fusion of high-brightness BDFPs to achieve monomerization, which increases the effective brightness by up to 180% in vivo, and can effectively improve the labeling effect. By combining the above two approaches, the brightness of the tandem BDFPs was much improved compared with that of the previously reported fluorescent proteins in a similar spectral range. The tandem BDFPs were expressed stably while maintaining fluorescence in mammalian cells and Caenorhabditis elegans. They were also photostable and resistant to high temperature, low pH, and chemical denaturation. The tandem BDFPs advantages were proved in applications as biomarkers for imaging in super-resolution microscopy.

9.
Artículo en Inglés | MEDLINE | ID: mdl-38623952

RESUMEN

Mechanistic insights into myosin II energy transduction in striated muscle in health and disease would benefit from functional studies of a wide range of point-mutants. This approach is, however, hampered by the slow turnaround of myosin II expression that usually relies on adenoviruses for gene transfer. A recently developed virus-free method is more time effective but would yield too small amounts of myosin for standard biochemical analyses. However, if the fluorescent adenosine triphosphate (ATP) and single molecule (sm) total internal reflection fluorescence microscopy previously used to analyze basal ATP turnover by myosin alone, can be expanded to actin-activated ATP turnover, it would appreciably reduce the required amount of myosin. To that end, we here describe zero-length cross-linking of human cardiac myosin II motor fragments (sub-fragment 1 long [S1L]) to surface-immobilized actin filaments in a configuration with maintained actin-activated ATP turnover. After optimizing the analysis of sm fluorescence events, we show that the amount of myosin produced from C2C12 cells in one 60 mm cell culture plate is sufficient to obtain both the basal myosin ATP turnover rate and the maximum actin-activated rate constant (kcat). Our analysis of many single binding events of fluorescent ATP to many S1L motor fragments revealed processes reflecting basal and actin-activated ATPase, but also a third exponential process consistent with non-specific ATP-binding outside the active site.

10.
J Agric Food Chem ; 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38624165

RESUMEN

Immunochromatography (ICA) remains untapped toward enhanced sensitivity and applicability for fulfilling the nuts and bolts of on-site food safety surveillance. Herein, we report a fortified dual-spectral overlap with enhanced colorimetric/fluorescence dual-response ICA for on-site bimodal-type gentamicin (Gen) monitoring by employing polydopamine (PDA)-coated AuNPs (APDA) simultaneously serving as a colorimetric reporter and a fluorescence quencher. Availing of the enhanced colorimetric response that originated from the PDA layer, the resultant APDA exhibits less required antibody and immunoprobes in a single immunoassay, which facilitates improved antibody utilization efficiency and immuno-recognition in APDA-ICA. Further integrated with the advantageous features of fortified excitation and emission dual-spectral overlap for the Arg/ATT-AuNCs, this APDA-ICA with a "turn on/off" pattern achieves the visual limits of detection of 1.0 and 0.5 ng mL-1 for colorimetric and fluorescence patterns (25- and 50-fold lower than standard AuNPs-ICA). Moreover, the excellent self-calibration and satisfactory recovery of 79.03-118.04% were shown in the on-site visual colorimetric-fluorescence analysis for Gen in real environmental media (including real river water, an urban aquaculture water body, an aquatic product, and an animal byproduct). This work provides the feasibility of exploiting fortified dual-spectral overlap with an enhanced colorimetric/fluorescence dual response for safeguarding food safety and public health.

11.
Viral Immunol ; 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38625025

RESUMEN

Viral infections are major causes of mortality in solid-organ and hematopoietic stem cell transplant recipients. Epstein-Barr virus (EBV) and Parvovirus B19 (B19V) are among the common viral infections after transplantation and were recommended for increased screening in relevant guidelines. Therefore, the development of rapid, specific, and cost-effective diagnostic methods for EBV and B19V is of paramount importance. We applied Fluorescence of Loop Primer Upon Self-Dequenching Loop-mediated Isothermal Amplification (FLOS-LAMP) for the first time to develop a novel multiplex assay for the detection of EBV and B19V; the fluorophore attached to the probe are self-quenched in unbound state. After binding to the dumbbell-shaped DNA target, the fluorophore is dequenched, resulting in fluorescence development. The novel multiplex FLOS-LAMP assay was optimized by testing various ratios of primer sets. This novel assay, with great specificity, did not cross-react with the common virus. For the detection of EBV and B19V, the limits of detection could reach 969 and 798 copies/µL, respectively, and the assay could be completed within 25 min. Applying this novel assay to detect 200 clinical transplant individuals indicated that the novel assay had high specificity and good sensitivity. We developed multiplex FLOS-LAMP assay for the detection of EBV and B19V, which has the potential to become an important tool for clinical transplant patient screening.

12.
Mol Pharm ; 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38625037

RESUMEN

Micellar drug delivery systems (MDDS) for the intravenous administration of poorly soluble drugs have great advantages over alternative formulations in terms of the safety of their excipients, storage stability, and straightforward production. A classic example is mixed micelles of glycocholate (GC) and lecithin, both endogenous substances in human blood. What limits the use of MDDS is the complexity of the transitions after injection. In particular, as the MDDS disintegrate partially or completely after injection, the drug has to be transferred safely to endogenous carriers in the blood, such as human serum albumin (HSA). If this transfer is compromised, the drug might precipitate─a process that needs to be excluded under all circumstances. The key question of this paper is whether the high local concentration of GC at the moment and site of MDDS dissolution might transiently saturate HSA binding sites and, hence, endanger quick drug transfer. To address this question, we have used a new approach, which is time-resolved fluorescence spectroscopy of the single tryptophan in HSA, Trp-214, to characterize the competitive binding of GC and the drug substitute anilinonaphthalenesulfonate (ANS) to HSA. Time-resolved fluorescence of Trp-214 showed important advantages over established methods for tackling this problem. ANS has been the standard "model drug" to study albumin binding for decades, given its structural similarity to the class of naphthalene-containing acidic drugs and the fact that it is displaced from HSA by numerous drugs (which presumably bind to the same sites). Our complex global fit uses the critical approximation that the average lifetimes behave similarly to a single lifetime, but the resulting errors are found to be moderate and the results provide a convincing explanation of the, at first glance, counterintuitive behavior. Accordingly, and largely in line with the literature, we observed two types of sites binding ANS at HSA: 3 type A, rather peripheral, and 2 type B, likely more central sites. The latter quench Trp-214 by Förster Resonance Energy Transfer (FRET) with a rate constant of ≈0.4 ns-1 per ANS. Adding millimolar concentrations of GC displaces ANS from the A sites but not from B sites. At incomplete ANS saturation, this causes a GC-induced translocation of ANS from A to the more FRET-active B sites. This leads to the apparent paradox that the partial displacement of ANS from HSA increases its quenching effect on Trp-214. The most important conclusion is that (ANS-like) drugs cannot be displaced from the type-B sites, and consequently, drug transfer to these sites is not impaired by competitive binding of GC in the vicinity of a dissolving micelle. The second conclusion is that for unbound GC above the CMC (9 mM), ANS equilibrates between HSA and GC micelles but with a strong preference for free sites on HSA. That means that even persisting micelles would lose their cargo readily once exposed to HSA. For all MDDS sharing this property, targeted drug delivery approaches involving them as the nanocarrier would be pointless.

13.
Histochem Cell Biol ; 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38625562

RESUMEN

Extrachromosomal DNA (ecDNA) are circular regions of DNA that are found in many cancers. They are an important means of oncogene amplification, and correlate with treatment resistance and poor prognosis. Consequently, there is great interest in exploring and targeting ecDNA vulnerabilities as potential new therapeutic targets for cancer treatment. However, the biological significance of ecDNA and their associated regulatory control remains unclear. Light microscopy has been a central tool in the identification and characterisation of ecDNA. In this review we describe the different cellular models available to study ecDNA, and the imaging tools used to characterise ecDNA and their regulation. The insights gained from quantitative imaging are discussed in comparison with genome sequencing and computational approaches. We suggest that there is a crucial need for ongoing innovation using imaging if we are to achieve a full understanding of the dynamic regulation and organisation of ecDNA and their role in tumourigenesis.

14.
J Fluoresc ; 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38625574

RESUMEN

Folic acid (FA) is a water-soluble vitamin found in diverse natural sources and is crucial for preserving human health. The risk of health issues due to FA deficiency underscores the need for a straightforward and sensitive FA detection methodology. Carbon dots (CDs) have gained significant attention owing to their exceptional fluorescence performance, biocompatibility, and easy accessibility. Consequently, numerous research studies have concentrated on developing advanced CD fluorescent probes to enable swift and precise FA detection. Despite these efforts, there is still a requirement for a thorough overview of the efficient synthesis of CDs and their practical applications in FA detection to further promote the widespread use of CDs. This review paper focuses on the practical applications of CD sensors for FA detection. It begins with an in-depth introduction to FA and CDs. Following that, based on various synthetic approaches, the prepared CDs are classified into diverse detection methods, such as single sensing, visual detection, and electrochemical methods. Furthermore, persistent challenges and potential avenues are highlighted for future research to provide valuable insights into crafting effective CDs and detecting FA.

15.
Ecol Evol ; 14(4): e11297, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38623520

RESUMEN

Estimation of energy partitioning at leaf scale, such as fluorescence yield (ΦF) and photochemical yield (ΦP), is crucial to tracking vegetation gross primary productivity (GPP) at global scale. Nitrogen is an important participant in the process of light capture, electron transfer, and carboxylation in vegetation photosynthesis. However, the quantitative relationship between leaf nitrogen allocation and leaf energy partitioning remains unexplored. Here, a field experiment was established to explore growth stage variations in energy partitioning and nitrogen allocation at leaf scale using active fluorescence detection and photosynthetic gas exchange method in rice in the subtropical region of China. We observed a strongly positive correlation between the investment proportion of leaf nitrogen in photosynthetic system and ΦF during the vegetative growth stage. There were significant differences in leaf energy partitioning, leaf nitrogen allocation, and the relationship between ΦF and ΦP before and after flowering. Furthermore, flowering weakened the correlation between the investment proportion of leaf nitrogen in photosynthetic system and ΦF. These findings highlight the crucial role of phenological factors in exploring seasonal photosynthetic dynamics and carbon fixation of ecosystems.

16.
Mater Today Bio ; 26: 101052, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38628351

RESUMEN

Advanced stages of breast cancer are frequently complicated by bone metastases, which cause significant cancer-related bone destruction and mortality. However, the early precise theranostics of bone metastasis remains a formidable challenge in clinical practice. Herein,a novel all-in-one nanotheranostic system (ABI NYs) combining NIR-II FL/PA dual-modal imaging with photothermal-immunity therapeutic functionalities in one component was designed to precisely localize bone metastasis microscopic lesions and achieve complete tumor ablation at an early stage. The surface modification of the nanosystem with ibandronate (IBN) facilitates both passive and active targeting, significantly improving the detection rate of bone metastasis and suppressing the bone resorption. Superior photothermal performance produces sufficient heat to kill tumor cells while stimulating the upregulation of heat shock proteins 70 (HSP70), which triggers the immunogenic cell death (ICD) effect and the anti-tumor immune response. These all-in-one nanosystems precisely demonstrated early lesion localization in bone metastases and total tumor ablation with a single integration via "one-component, multi-functions" technique. To sum up, ABI NYs, as novel biomineralizing nanosystems integrated with anti-tumor and bone repair, present a synergistic therapy strategy, providing insight into the theranostics of bone metastases and clinical research.

17.
Ann Vasc Dis ; 17(1): 59-62, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38628929

RESUMEN

A 54-year-old woman with a mycotic superior mesenteric artery (SMA) aneurysm underwent emergent aneurysm resection with a great saphenous vein bypass. Follow-up computed tomography revealed a rapidly growing recurrent SMA aneurysm at the stump. Under the diagnosis of recurrent pseudoaneurysm of SMA with a fragile stump, we performed an open dual arterial bypass using indocyanine green fluorescence angiography and endovascular coil embolization. Subsequently, the patient's recurrent mycotic SMA aneurysm was successfully managed without mesenteric ischemic complications. This method may help prevent fatal mesenteric ischemia during SMA aneurysm surgery.

18.
Methods Mol Biol ; 2794: 33-43, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38630218

RESUMEN

Two-photon FRET (Förster resonance energy transfer) and FLIM (fluorescence lifetime imaging microscopy) enable the detection of FRET changes of fluorescence reporters in deep brain tissues, which provide a valuable approach for monitoring target molecular dynamics and functions. Here, we describe two-photon FRET and FLIM imaging techniques that allow us to visualize endogenous and optogenetically induced cAMP dynamics in living neurons with genetically engineered FRET-based cAMP reporters.


Asunto(s)
Transferencia Resonante de Energía de Fluorescencia , Ingeniería Genética , Microscopía Fluorescente , Neuronas , Fotones
19.
Methods Mol Biol ; 2794: 79-94, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38630222

RESUMEN

Reconstitution of intracellular transport in cell-free in vitro assays enables the understanding and dissection of the molecular mechanisms that underlie membrane traffic. Using total internal reflection fluorescence (TIRF) microscopy and microtubules, which are immobilized to a functionalized glass surface, the kinetic properties of single kinesin molecules can be imaged and analyzed in the presence or absence of microtubule-associated proteins. Here, we describe methods for the in vitro reconstitution of the motility of the neuronal kinesin motor KIF1A on microtubules associated with heteromeric septin (SEPT2/6/7) complexes. This method can be adapted for various neuronal septin complexes and kinesin motors, leading to new insights into the spatial regulation of neuronal membrane traffic by microtubule-associated septins.


Asunto(s)
Cinesinas , Septinas , Microtúbulos , Citoesqueleto , Proteínas Asociadas a Microtúbulos
20.
Chemistry ; : e202401246, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38630894

RESUMEN

A thorough understanding of the internal conversion process between excited states is important for designing ideal multiple emissive materials. However, it is hard to experimentally measure both the energy barrier and energy gaps between the excited states of a compound. For a long time, it is dubious if what was measured is the energy gap or energy barrier between two excited states. In this paper, we designed 1-(pyren-2'-yl)-9,12-di(p-tolyl)-o-carborane (2), which shows dual emission in solution. Temperature-dependent fluorescence measurements show that the two emission bands in hexane are corresponding to two different excited states. The ratio of the emission bands is controlled by thermodynamics at higher temperatures and by kinetics at lower temperatures. Thus, the energy barrier and energy gaps between the two excited states of 2 can be experimentally estimated.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...